Combinatorial Online Prediction via Metarounding

نویسندگان

  • Takahiro Fujita
  • Kohei Hatano
  • Eiji Takimoto
چکیده

We consider online prediction problems of combinatorial concepts. Examples of such concepts include s-t paths, permutations, truth assignments, set covers, and so on. The goal of the online prediction algorithm is to compete with the best fixed combinatorial concept in hindsight. A generic approach to this problem is to design an online prediction algorithm using the corresponding offline (approximation) algorithm as an oracle. The current state-of-the art method, however, is not efficient enough. In this paper we propose a more efficient online prediction algorithm when the offline approximation algorithm has a guarantee of the integrality gap.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kuhn meets Rosenblatt: Combinatorial Algorithms for Online Structured Prediction

Online algorithms have been successful at a variety of prediction tasks. In structured prediction settings, the model produced by an online learner is fed as input to some combinatorial algorithm for producing structured outputs. This combinatorial algorithm is predominantly considered a black box, which severely limits the control available to the learner. In this paper, we break open this bla...

متن کامل

Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combina...

متن کامل

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

We develop computationally efficient algorithms for online multi-class prediction. Our construction is based on carefully-chosen data-dependent surrogate loss functions, and the new methods enjoy strong mistake bound guarantees. To illustrate the technique, we study the combinatorial problem of node classification and develop a prediction strategy that is linear-time per round. In contrast, the...

متن کامل

Online Prediction under Submodular Constraints

We consider an online prediction problem of combinatorial concepts where each combinatorial concept is represented as a vertex of a polyhedron described by a submodular function (base polyhedron). In general, there are exponentially many vertices in the base polyhedron. We propose polynomial time algorithms with regret bounds. In particular, for cardinality-based submodular functions, we give O...

متن کامل

Prediction by random-walk perturbation

We propose a version of the follow-the-perturbed-leader online prediction algorithm in which the cumulative losses are perturbed by independent symmetric random walks. The forecaster is shown to achieve an expected regret of the optimal order O( √ n logN) where n is the time horizon and N is the number of experts. More importantly, it is shown that the forecaster changes its prediction at most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013